muzruno.com

Електрически линии на електрическото поле. въведение

Разграничителните полета са скаларни и векторни (в нашия случай векторното поле ще бъде електрическо). Съответно, те се моделират от скаларни или векторни координатни функции, както и от време.

Скаларното поле е описано с функция на формата phi-. Такива полета могат да бъдат визуално показвани, като се използват повърхности от едно и също ниво: phi (x, y, z) = c, с = const.

Дефинираме вектор, който е насочен към максималния растеж на функцията phi-.

Абсолютната стойност на този вектор определя скоростта на промяна на функцията phi-.

Очевидно е, че скаларното поле генерира векторно поле.

Такова електрическо поле се нарича потенциално поле и функция се нарича потенциал. Повърхности от същото ниво се наричат ​​еквипотенциални повърхности. Например, помислете за електрическо поле.

За да се визуализират полетата, се изграждат т.нар. Линии на силата на електрическото поле. Те се наричат ​​и векторни линии. Това са линиите, допирателни към които в точката посочват посоката на електрическото поле. Броят на линиите, които преминават през повърхността на единицата, е пропорционален на абсолютната стойност на вектора.



Въвеждаме концепцията за векторна диференциална линия по линия l. Този вектор е насочен по допирателната към линията l и в абсолютна стойност е равен на диференциала dl.

Нека се даде определено електрическо поле, което трябва да бъде представено като полеви линии на сила. С други думи, ние определяме коефициента на разширение (компресия) k на вектора, така че да съвпада с разликата. Уравнявайки компонентите на диференциала и вектора, получаваме система от уравнения. След интегрирането може да се конструира уравнението на линиите на сила.

При векторен анализ има операции, които дават информация за това кои линии на сила на електрическото поле се случват в конкретен случай. Ние въведе понятието "вектор поток" на повърхността С. формалната дефиниция на потока F е както следва: стойността се разглежда като продукт на конвенционални диференциални DS на единица нормалата към повърхността S. Орт е избран така, че да определя външната норма на повърхността.

Може да се направи аналогия между концепцията за полевия поток и потока на материята: материята за единица време минава през повърхност, която от своя страна е перпендикулярна на посоката на потока на полето. Ако линиите на сила електростатично поле излез от повърхността S навън, тогава потокът е положителен, а ако не, е отрицателен. В общия случай потокът може да се изчисли с броя линии на сила, които излизат от повърхността. От друга страна, потокът е пропорционален на броя линии на сила, проникващи в повърхностния елемент.

Отклонението на векторната функция се изчислява в точката, чийто курс е обемът Delta-V. S е повърхността, обхващаща обема Delta-V. Действието на дивергенция ни позволява да характеризираме пространствата за наличието на полеви източници в нея. Когато повърхността S се компресира до точката P, линиите на силата на електричното поле, проникващи върху повърхността, остават в същото количество. Ако мястото не е източник на точка на полето (изтичане или изтичане), след това повърхността на натиск в този момент количеството на електропроводи, започвайки в определен момент, равно на нула (броя на редовете в повърхност S е равен на броя на линии, произлизащи от тази повърхност).

Интегралът върху затворения контур L в дефиницията на работата на ротора се нарича циркулация на електроенергия по контура L. Работата на ротора характеризира полето в точката на пространството. Посоката на ротора определя стойността на затворения поток от полета около тази точка (роторът характеризира вихъра на полето) и посоката му. Въз основа на дефиницията на ротора, чрез прости трансформации е възможно да се изчислят проекциите на електрическия вектор в картезианската координатна система, както и линиите на силата на електрическото поле.

Споделяне в социалните мрежи:

сроден